Chatbot
The useChat
hook makes it effortless to create a conversational user interface for your chatbot application. It enables the streaming of chat messages from your AI provider, manages the chat state, and updates the UI automatically as new messages arrive.
To summarize, the useChat
hook provides the following features:
- Message Streaming: All the messages from the AI provider are streamed to the chat UI in real-time.
- Managed States: The hook manages the states for input, messages, status, error and more for you.
- Seamless Integration: Easily integrate your chat AI into any design or layout with minimal effort.
In this guide, you will learn how to use the useChat
hook to create a chatbot application with real-time message streaming.
Check out our chatbot with tools guide to learn how to use tools in your chatbot.
Let's start with the following example first.
Example
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
export default function Page() { const { messages, sendMessage, status } = useChat({ transport: new DefaultChatTransport({ api: '/api/chat', }), }); const [input, setInput] = useState('');
return ( <> {messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '} {message.parts.map((part, index) => part.type === 'text' ? <span key={index}>{part.text}</span> : null, )} </div> ))}
<form onSubmit={e => { e.preventDefault(); if (input.trim()) { sendMessage({ text: input }); setInput(''); } }} > <input value={input} onChange={e => setInput(e.target.value)} disabled={status !== 'ready'} placeholder="Say something..." /> <button type="submit" disabled={status !== 'ready'}> Submit </button> </form> </> );}
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, UIMessage } from 'ai';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: openai('gpt-4.1'), system: 'You are a helpful assistant.', messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse();}
The UI messages have a new parts
property that contains the message parts.
We recommend rendering the messages using the parts
property instead of the
content
property. The parts property supports different message types,
including text, tool invocation, and tool result, and allows for more flexible
and complex chat UIs.
In the Page
component, the useChat
hook will request to your AI provider endpoint whenever the user sends a message using sendMessage
.
The messages are then streamed back in real-time and displayed in the chat UI.
This enables a seamless chat experience where the user can see the AI response as soon as it is available, without having to wait for the entire response to be received.
Customized UI
useChat
also provides ways to manage the chat message states via code, show status, and update messages without being triggered by user interactions.
Status
The useChat
hook returns a status
. It has the following possible values:
submitted
: The message has been sent to the API and we're awaiting the start of the response stream.streaming
: The response is actively streaming in from the API, receiving chunks of data.ready
: The full response has been received and processed; a new user message can be submitted.error
: An error occurred during the API request, preventing successful completion.
You can use status
for e.g. the following purposes:
- To show a loading spinner while the chatbot is processing the user's message.
- To show a "Stop" button to abort the current message.
- To disable the submit button.
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
export default function Page() { const { messages, sendMessage, status, stop } = useChat({ transport: new DefaultChatTransport({ api: '/api/chat', }), }); const [input, setInput] = useState('');
return ( <> {messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '} {message.parts.map((part, index) => part.type === 'text' ? <span key={index}>{part.text}</span> : null, )} </div> ))}
{(status === 'submitted' || status === 'streaming') && ( <div> {status === 'submitted' && <Spinner />} <button type="button" onClick={() => stop()}> Stop </button> </div> )}
<form onSubmit={e => { e.preventDefault(); if (input.trim()) { sendMessage({ text: input }); setInput(''); } }} > <input value={input} onChange={e => setInput(e.target.value)} disabled={status !== 'ready'} placeholder="Say something..." /> <button type="submit" disabled={status !== 'ready'}> Submit </button> </form> </> );}
Error State
Similarly, the error
state reflects the error object thrown during the fetch request.
It can be used to display an error message, disable the submit button, or show a retry button:
We recommend showing a generic error message to the user, such as "Something went wrong." This is a good practice to avoid leaking information from the server.
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
export default function Chat() { const { messages, sendMessage, error, reload } = useChat({ transport: new DefaultChatTransport({ api: '/api/chat', }), }); const [input, setInput] = useState('');
return ( <div> {messages.map(m => ( <div key={m.id}> {m.role}:{' '} {m.parts.map((part, index) => part.type === 'text' ? <span key={index}>{part.text}</span> : null, )} </div> ))}
{error && ( <> <div>An error occurred.</div> <button type="button" onClick={() => reload()}> Retry </button> </> )}
<form onSubmit={e => { e.preventDefault(); if (input.trim()) { sendMessage({ text: input }); setInput(''); } }} > <input value={input} onChange={e => setInput(e.target.value)} disabled={error != null} /> </form> </div> );}
Please also see the error handling guide for more information.
Modify messages
Sometimes, you may want to directly modify some existing messages. For example, a delete button can be added to each message to allow users to remove them from the chat history.
The setMessages
function can help you achieve these tasks:
const { messages, setMessages } = useChat()
const handleDelete = (id) => { setMessages(messages.filter(message => message.id !== id))}
return <> {messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '} {message.parts.map((part, index) => ( part.type === 'text' ? ( <span key={index}>{part.text}</span> ) : null ))} <button onClick={() => handleDelete(message.id)}>Delete</button> </div> ))} ...
You can think of messages
and setMessages
as a pair of state
and setState
in React.
Cancellation and regeneration
It's also a common use case to abort the response message while it's still streaming back from the AI provider. You can do this by calling the stop
function returned by the useChat
hook.
const { stop, status } = useChat()
return <> <button onClick={stop} disabled={!(status === 'streaming' || status === 'submitted')}>Stop</button> ...
When the user clicks the "Stop" button, the fetch request will be aborted. This avoids consuming unnecessary resources and improves the UX of your chatbot application.
Similarly, you can also request the AI provider to reprocess the last message by calling the regenerate
function returned by the useChat
hook:
const { regenerate, status } = useChat();
return ( <> <button onClick={regenerate} disabled={!(status === 'ready' || status === 'error')} > Regenerate </button> ... </>);
When the user clicks the "Regenerate" button, the AI provider will regenerate the last message and replace the current one correspondingly.
Throttling UI Updates
By default, the useChat
hook will trigger a render every time a new chunk is received.
You can throttle the UI updates with the experimental_throttle
option.
const { messages, ... } = useChat({ // Throttle the messages and data updates to 50ms: experimental_throttle: 50})
Event Callbacks
useChat
provides optional event callbacks that you can use to handle different stages of the chatbot lifecycle:
onFinish
: Called when the assistant message is completedonError
: Called when an error occurs during the fetch request.onData
: Called whenever a data part is received.
These callbacks can be used to trigger additional actions, such as logging, analytics, or custom UI updates.
import { UIMessage } from 'ai';
const { /* ... */} = useChat({ onFinish: (message, { usage, finishReason }) => { console.log('Finished streaming message:', message); console.log('Token usage:', usage); console.log('Finish reason:', finishReason); }, onError: error => { console.error('An error occurred:', error); }, onData: data => { console.log('Received data part from server:', data); },});
It's worth noting that you can abort the processing by throwing an error in the onData
callback. This will trigger the onError
callback and stop the message from being appended to the chat UI. This can be useful for handling unexpected responses from the AI provider.
Request Configuration
Custom headers, body, and credentials
By default, the useChat
hook sends a HTTP POST request to the /api/chat
endpoint with the message list as the request body. You can customize the request in two ways:
Hook-Level Configuration (Applied to all requests)
You can configure transport-level options that will be applied to all requests made by the hook:
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';
const { messages, sendMessage } = useChat({ transport: new DefaultChatTransport({ api: '/api/custom-chat', headers: { Authorization: 'your_token', }, body: { user_id: '123', }, credentials: 'same-origin', }),});
Dynamic Hook-Level Configuration
You can also provide functions that return configuration values. This is useful for authentication tokens that need to be refreshed, or for configuration that depends on runtime conditions:
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';
const { messages, sendMessage } = useChat({ transport: new DefaultChatTransport({ api: '/api/custom-chat', headers: () => ({ Authorization: `Bearer ${getAuthToken()}`, 'X-User-ID': getCurrentUserId(), }), body: () => ({ sessionId: getCurrentSessionId(), preferences: getUserPreferences(), }), credentials: () => 'include', }),});
For component state that changes over time, use useRef
to store the current
value and reference ref.current
in your configuration function, or prefer
request-level options (see next section) for better reliability.
Request-Level Configuration (Recommended)
Recommended: Use request-level options for better flexibility and control. Request-level options take precedence over hook-level options and allow you to customize each request individually.
// Pass options as the second parameter to sendMessagesendMessage( { text: input }, { headers: { Authorization: 'Bearer token123', 'X-Custom-Header': 'custom-value', }, body: { temperature: 0.7, max_tokens: 100, user_id: '123', }, metadata: { userId: 'user123', sessionId: 'session456', }, },);
The request-level options are merged with hook-level options, with request-level options taking precedence. On your server side, you can handle the request with this additional information.
Setting custom body fields per request
You can configure custom body
fields on a per-request basis using the second parameter of the sendMessage
function.
This is useful if you want to pass in additional information to your backend that is not part of the message list.
'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';
export default function Chat() { const { messages, sendMessage } = useChat(); const [input, setInput] = useState('');
return ( <div> {messages.map(m => ( <div key={m.id}> {m.role}:{' '} {m.parts.map((part, index) => part.type === 'text' ? <span key={index}>{part.text}</span> : null, )} </div> ))}
<form onSubmit={event => { event.preventDefault(); if (input.trim()) { sendMessage( { text: input }, { body: { customKey: 'customValue', }, }, ); setInput(''); } }} > <input value={input} onChange={e => setInput(e.target.value)} /> </form> </div> );}
You can retrieve these custom fields on your server side by destructuring the request body:
export async function POST(req: Request) { // Extract additional information ("customKey") from the body of the request: const { messages, customKey }: { messages: UIMessage[]; customKey: string } = await req.json(); //...}
Message Metadata
You can attach custom metadata to messages for tracking information like timestamps, model details, and token usage.
// Server: Send metadata about the messagereturn result.toUIMessageStreamResponse({ messageMetadata: ({ part }) => { if (part.type === 'start') { return { createdAt: Date.now(), model: 'gpt-4o', }; }
if (part.type === 'finish') { return { totalTokens: part.totalUsage.totalTokens, }; } },});
// Client: Access metadata via message.metadata{ messages.map(message => ( <div key={message.id}> {message.role}:{' '} {message.metadata?.createdAt && new Date(message.metadata.createdAt).toLocaleTimeString()} {/* Render message content */} {message.parts.map((part, index) => part.type === 'text' ? <span key={index}>{part.text}</span> : null, )} {/* Show token count if available */} {message.metadata?.totalTokens && ( <span>{message.metadata.totalTokens} tokens</span> )} </div> ));}
For complete examples with type safety and advanced use cases, see the Message Metadata documentation.
Transport Configuration
You can configure custom transport behavior using the transport
option to customize how messages are sent to your API:
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';
export default function Chat() { const { messages, sendMessage } = useChat({ id: 'my-chat', transport: new DefaultChatTransport({ prepareSendMessagesRequest: ({ id, messages }) => { return { body: { id, message: messages[messages.length - 1], }, }; }, }), });
// ... rest of your component}
The corresponding API route receives the custom request format:
export async function POST(req: Request) { const { id, message } = await req.json();
// Load existing messages and add the new one const messages = await loadMessages(id); messages.push(message);
const result = streamText({ model: openai('gpt-4.1'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse();}
Advanced: Trigger-based routing
For more complex scenarios like message regeneration, you can use trigger-based routing:
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';
export default function Chat() { const { messages, sendMessage, regenerate } = useChat({ id: 'my-chat', transport: new DefaultChatTransport({ prepareSendMessagesRequest: ({ id, messages, trigger, messageId }) => { if (trigger === 'submit-user-message') { return { body: { trigger: 'submit-user-message', id, message: messages[messages.length - 1], messageId, }, }; } else if (trigger === 'regenerate-assistant-message') { return { body: { trigger: 'regenerate-assistant-message', id, messageId, }, }; } throw new Error(`Unsupported trigger: ${trigger}`); }, }), });
// ... rest of your component}
The corresponding API route would handle different triggers:
export async function POST(req: Request) { const { trigger, id, message, messageId } = await req.json();
const chat = await readChat(id); let messages = chat.messages;
if (trigger === 'submit-user-message') { // Handle new user message messages = [...messages, message]; } else if (trigger === 'regenerate-assistant-message') { // Handle message regeneration - remove messages after messageId const messageIndex = messages.findIndex(m => m.id === messageId); if (messageIndex !== -1) { messages = messages.slice(0, messageIndex); } }
const result = streamText({ model: openai('gpt-4.1'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse();}
To learn more about building custom transports, refer to the Transport API documentation.
Controlling the response stream
With streamText
, you can control how error messages and usage information are sent back to the client.
Error Messages
By default, the error message is masked for security reasons.
The default error message is "An error occurred."
You can forward error messages or send your own error message by providing a getErrorMessage
function:
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, UIMessage } from 'ai';
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: openai('gpt-4.1'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse({ onError: error => { if (error == null) { return 'unknown error'; }
if (typeof error === 'string') { return error; }
if (error instanceof Error) { return error.message; }
return JSON.stringify(error); }, });}
Usage Information
By default, the usage information is sent back to the client. You can disable it by setting the sendUsage
option to false
:
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, UIMessage } from 'ai';
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: openai('gpt-4.1'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse({ sendUsage: false, });}
Text Streams
useChat
can handle plain text streams by setting the streamProtocol
option to text
:
'use client';
import { useChat } from '@ai-sdk/react';import { TextStreamChatTransport } from 'ai';
export default function Chat() { const { messages } = useChat({ transport: new TextStreamChatTransport({ api: '/api/chat', }), });
return <>...</>;}
This configuration also works with other backend servers that stream plain text. Check out the stream protocol guide for more information.
When using TextStreamChatTransport
, tool calls, usage information and finish
reasons are not available.
Reasoning
Some models such as as DeepSeek deepseek-reasoner
and Anthropic claude-3-7-sonnet-20250219
support reasoning tokens.
These tokens are typically sent before the message content.
You can forward them to the client with the sendReasoning
option:
import { deepseek } from '@ai-sdk/deepseek';import { convertToModelMessages, streamText, UIMessage } from 'ai';
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: deepseek('deepseek-reasoner'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse({ sendReasoning: true, });}
On the client side, you can access the reasoning parts of the message object.
Reasoning parts have a text
property that contains the reasoning content.
messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '} {message.parts.map((part, index) => { // text parts: if (part.type === 'text') { return <div key={index}>{part.text}</div>; }
// reasoning parts: if (part.type === 'reasoning') { return <pre key={index}>{part.text}</pre>; } })} </div>));
Sources
Some providers such as Perplexity and Google Generative AI include sources in the response.
Currently sources are limited to web pages that ground the response.
You can forward them to the client with the sendSources
option:
import { perplexity } from '@ai-sdk/perplexity';import { convertToModelMessages, streamText, UIMessage } from 'ai';
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: perplexity('sonar-pro'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse({ sendSources: true, });}
On the client side, you can access source parts of the message object.
There are two types of sources: source-url
for web pages and source-document
for documents.
Here is an example that renders both types of sources:
messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '}
{/* Render URL sources */} {message.parts .filter(part => part.type === 'source-url') .map(part => ( <span key={`source-${part.id}`}> [ <a href={part.url} target="_blank"> {part.title ?? new URL(part.url).hostname} </a> ] </span> ))}
{/* Render document sources */} {message.parts .filter(part => part.type === 'source-document') .map(part => ( <span key={`source-${part.id}`}> [<span>{part.title ?? `Document ${part.id}`}</span>] </span> ))} </div>));
Image Generation
Some models such as Google gemini-2.0-flash-exp
support image generation.
When images are generated, they are exposed as files to the client.
On the client side, you can access file parts of the message object
and render them as images.
messages.map(message => ( <div key={message.id}> {message.role === 'user' ? 'User: ' : 'AI: '} {message.parts.map((part, index) => { if (part.type === 'text') { return <div key={index}>{part.text}</div>; } else if (part.type === 'file' && part.mediaType.startsWith('image/')) { return <img key={index} src={part.url} alt="Generated image" />; } })} </div>));
Attachments
The useChat
hook supports sending file attachments along with a message as well as rendering them on the client. This can be useful for building applications that involve sending images, files, or other media content to the AI provider.
There are two ways to send files with a message: using a FileList
object from file inputs or using an array of file objects.
FileList
By using FileList
, you can send multiple files as attachments along with a message using the file input element. The useChat
hook will automatically convert them into data URLs and send them to the AI provider.
Currently, only image/*
and text/*
content types get automatically
converted into multi-modal content
parts. You will need to
handle other content types manually.
'use client';
import { useChat } from '@ai-sdk/react';import { useRef, useState } from 'react';
export default function Page() { const { messages, sendMessage, status } = useChat();
const [input, setInput] = useState(''); const [files, setFiles] = useState<FileList | undefined>(undefined); const fileInputRef = useRef<HTMLInputElement>(null);
return ( <div> <div> {messages.map(message => ( <div key={message.id}> <div>{`${message.role}: `}</div>
<div> {message.parts.map((part, index) => { if (part.type === 'text') { return <span key={index}>{part.text}</span>; }
if ( part.type === 'file' && part.mediaType?.startsWith('image/') ) { return <img key={index} src={part.url} alt={part.filename} />; }
return null; })} </div> </div> ))} </div>
<form onSubmit={event => { event.preventDefault(); if (input.trim()) { sendMessage({ text: input, files, }); setInput(''); setFiles(undefined);
if (fileInputRef.current) { fileInputRef.current.value = ''; } } }} > <input type="file" onChange={event => { if (event.target.files) { setFiles(event.target.files); } }} multiple ref={fileInputRef} /> <input value={input} placeholder="Send message..." onChange={e => setInput(e.target.value)} disabled={status !== 'ready'} /> </form> </div> );}
File Objects
You can also send files as objects along with a message. This can be useful for sending pre-uploaded files or data URLs.
'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';import { FileUIPart } from 'ai';
export default function Page() { const { messages, sendMessage, status } = useChat();
const [input, setInput] = useState(''); const [files] = useState<FileUIPart[]>([ { type: 'file', filename: 'earth.png', mediaType: 'image/png', url: 'https://example.com/earth.png', }, { type: 'file', filename: 'moon.png', mediaType: 'image/png', url: '...', }, ]);
return ( <div> <div> {messages.map(message => ( <div key={message.id}> <div>{`${message.role}: `}</div>
<div> {message.parts.map((part, index) => { if (part.type === 'text') { return <span key={index}>{part.text}</span>; }
if ( part.type === 'file' && part.mediaType?.startsWith('image/') ) { return <img key={index} src={part.url} alt={part.filename} />; }
return null; })} </div> </div> ))} </div>
<form onSubmit={event => { event.preventDefault(); if (input.trim()) { sendMessage({ text: input, files, }); setInput(''); } }} > <input value={input} placeholder="Send message..." onChange={e => setInput(e.target.value)} disabled={status !== 'ready'} /> </form> </div> );}
Type Inference for Tools
When working with tools in TypeScript, AI SDK UI provides type inference helpers to ensure type safety for your tool inputs and outputs.
InferUITool
The InferUITool
type helper infers the input and output types of a single tool for use in UI messages:
import { InferUITool } from 'ai';import { z } from 'zod';
const weatherTool = { description: 'Get the current weather', parameters: z.object({ location: z.string().describe('The city and state'), }), execute: async ({ location }) => { return `The weather in ${location} is sunny.`; },};
// Infer the types from the tooltype WeatherUITool = InferUITool<typeof weatherTool>;// This creates a type with:// {// input: { location: string };// output: string;// }
InferUITools
The InferUITools
type helper infers the input and output types of a ToolSet
:
import { InferUITools, ToolSet } from 'ai';import { z } from 'zod';
const tools: ToolSet = { weather: { description: 'Get the current weather', parameters: z.object({ location: z.string().describe('The city and state'), }), execute: async ({ location }) => { return `The weather in ${location} is sunny.`; }, }, calculator: { description: 'Perform basic arithmetic', parameters: z.object({ operation: z.enum(['add', 'subtract', 'multiply', 'divide']), a: z.number(), b: z.number(), }), execute: async ({ operation, a, b }) => { switch (operation) { case 'add': return a + b; case 'subtract': return a - b; case 'multiply': return a * b; case 'divide': return a / b; } }, },};
// Infer the types from the tool settype MyUITools = InferUITools<typeof tools>;// This creates a type with:// {// weather: { input: { location: string }; output: string };// calculator: { input: { operation: 'add' | 'subtract' | 'multiply' | 'divide'; a: number; b: number }; output: number };// }
Using Inferred Types
You can use these inferred types to create a custom UIMessage type and pass it to various AI SDK UI functions:
import { InferUITools, UIMessage, UIDataTypes } from 'ai';
type MyUITools = InferUITools<typeof tools>;type MyUIMessage = UIMessage<never, UIDataTypes, MyUITools>;
Pass the custom type to useChat
or createUIMessageStream
:
import { useChat } from '@ai-sdk/react';import { createUIMessageStream } from 'ai';import { MyUIMessage } from './types';
// With useChatconst { messages } = useChat<MyUIMessage>();
// With createUIMessageStreamconst stream = createUIMessageStream<MyUIMessage>(/* ... */);
This provides full type safety for tool inputs and outputs on the client and server.