Render Visual Interface in Chat

An interesting consequence of language models that can call tools is that this ability can be used to render visual interfaces by streaming React components to the client.

http://localhost:3000
User: How is it going?
Assistant: All good, how may I help you?
What is the weather in San Francisco?
Send Message

Client

Let's build an assistant that gets the weather for any city by calling the getWeatherInformation tool. Instead of returning text during the tool call, you will render a React component that displays the weather information on the client.

app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';
import {
DefaultChatTransport,
lastAssistantMessageIsCompleteWithToolCalls,
} from 'ai';
import { useState } from 'react';
import { ChatMessage } from './api/chat/route';
export default function Chat() {
const [input, setInput] = useState('');
const { messages, sendMessage, addToolResult } = useChat<ChatMessage>({
transport: new DefaultChatTransport({
api: '/api/chat',
}),
sendAutomaticallyWhen: lastAssistantMessageIsCompleteWithToolCalls,
// run client-side tools that are automatically executed:
async onToolCall({ toolCall }) {
if (toolCall.toolName === 'getLocation') {
const cities = ['New York', 'Los Angeles', 'Chicago', 'San Francisco'];
// No await - avoids potential deadlocks
addToolResult({
tool: 'getLocation',
toolCallId: toolCall.toolCallId,
output: cities[Math.floor(Math.random() * cities.length)],
});
}
},
});
return (
<div className="flex flex-col w-full max-w-md py-24 mx-auto stretch gap-4">
{messages?.map(m => (
<div key={m.id} className="whitespace-pre-wrap flex flex-col gap-1">
<strong>{`${m.role}: `}</strong>
{m.parts?.map((part, i) => {
switch (part.type) {
case 'text':
return <div key={m.id + i}>{part.text}</div>;
// render confirmation tool (client-side tool with user interaction)
case 'tool-askForConfirmation':
return (
<div
key={part.toolCallId}
className="text-gray-500 flex flex-col gap-2"
>
<div className="flex gap-2">
{part.state === 'output-available' ? (
<b>{part.output}</b>
) : (
<>
<button
className="px-4 py-2 font-bold text-white bg-blue-500 rounded hover:bg-blue-700"
onClick={() =>
addToolResult({
tool: 'askForConfirmation',
toolCallId: part.toolCallId,
output: 'Yes, confirmed.',
})
}
>
Yes
</button>
<button
className="px-4 py-2 font-bold text-white bg-red-500 rounded hover:bg-red-700"
onClick={() =>
addToolResult({
tool: 'askForConfirmation',
toolCallId: part.toolCallId,
output: 'No, denied',
})
}
>
No
</button>
</>
)}
</div>
</div>
);
// other tools:
case 'tool-getWeatherInformation':
if (part.state === 'output-available') {
return (
<div
key={part.toolCallId}
className="flex flex-col gap-2 p-4 bg-blue-400 rounded-lg"
>
<div className="flex flex-row justify-between items-center">
<div className="text-4xl text-blue-50 font-medium">
{part.output.value}°
{part.output.unit === 'celsius' ? 'C' : 'F'}
</div>
<div className="h-9 w-9 bg-amber-400 rounded-full flex-shrink-0" />
</div>
<div className="flex flex-row gap-2 text-blue-50 justify-between">
{part.output.weeklyForecast.map(forecast => (
<div
key={forecast.day}
className="flex flex-col items-center"
>
<div className="text-xs">{forecast.day}</div>
<div>{forecast.value}°</div>
</div>
))}
</div>
</div>
);
}
break;
case 'tool-getLocation':
if (part.state === 'output-available') {
return (
<div
key={part.toolCallId}
className="text-gray-500 bg-gray-100 rounded-lg p-4"
>
User is in {part.output}.
</div>
);
} else {
return (
<div key={part.toolCallId} className="text-gray-500">
Calling getLocation...
</div>
);
}
default:
break;
}
})}
</div>
))}
<form
onSubmit={e => {
e.preventDefault();
sendMessage({ text: input });
setInput('');
}}
>
<input
className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"
value={input}
placeholder="Say something..."
onChange={e => setInput(e.currentTarget.value)}
/>
</form>
</div>
);
}

Server

api/chat.ts
import { openai } from '@ai-sdk/openai';
import {
type InferUITools,
type ToolSet,
type UIDataTypes,
type UIMessage,
convertToModelMessages,
stepCountIs,
streamText,
tool,
} from 'ai';
import { z } from 'zod';
const tools: ToolSet = {
getWeatherInformation: tool({
description: 'show the weather in a given city to the user',
inputSchema: z.object({ city: z.string() }),
execute: async ({}: { city: string }) => {
return {
value: 24,
unit: 'celsius',
weeklyForecast: [
{ day: 'Monday', value: 24 },
{ day: 'Tuesday', value: 25 },
{ day: 'Wednesday', value: 26 },
{ day: 'Thursday', value: 27 },
{ day: 'Friday', value: 28 },
{ day: 'Saturday', value: 29 },
{ day: 'Sunday', value: 30 },
],
};
},
}),
// client-side tool that starts user interaction:
askForConfirmation: tool({
description: 'Ask the user for confirmation.',
inputSchema: z.object({
message: z.string().describe('The message to ask for confirmation.'),
}),
}),
// client-side tool that is automatically executed on the client:
getLocation: tool({
description:
'Get the user location. Always ask for confirmation before using this tool.',
inputSchema: z.object({}),
}),
};
export type ChatTools = InferUITools<typeof tools>;
export type ChatMessage = UIMessage<never, UIDataTypes, ChatTools>;
export async function POST(request: Request) {
const { messages }: { messages: ChatMessage[] } = await request.json();
const result = streamText({
model: openai('gpt-4.1'),
messages: convertToModelMessages(messages),
tools,
stopWhen: stepCountIs(5),
});
return result.toUIMessageStreamResponse();
}